Approaches and challenges to engineering seed phytate and total phosphorus
نویسنده
چکیده
About 75% of seed total phosphorus (P) is found in a single compound, phytic acid (myo-inositol1,2,3,4,5,6-hexakisphosphate or InsP6). Phytic acid is not efficiently utilized by monogastric animals (poultry, swine, fish), which creates phosphorus management and environmental impact problems in animal production. Phytic acid also functions as an antinutrient when consumed in human and animal diets. These problems can be addressed via feed or food supplementation with P and other minerals or phytase, or more efficiently and sustainably at their source by crop breeding or bioengineering of lowphytic acid/high-available P crops. However, since phytic acid and its synthetic pathways are central to a number of metabolic, developmental and signaling pathways important to plant function and productivity, low-phytate can translate into low-yield or stress susceptibility. The biological functions of phytic acid and identification of genetic resources and strategies useful in engineering high-yielding, stress-tolerant low-phytate germplasm will be reviewed here. One promising approach that can avoid undesirable outcomes due to impacts on phytic acid metabolism is to engineer ‘‘high-phytase’’ seeds. In contrast to the issue of seed phytic acid, there has been relatively little interest in seed total P as a trait of agricultural importance. However, seed total P is very important to the long-term goal of sustainable and environmentally friendly agricultural production. Certain low-phytate genotypes are also ‘‘low-total P’’, which might represent the ideal seed P trait for nearly all end-uses, including uses in ruminant and nonruminant feeds and in biofuels production. Future research directions will include screening for additional genetic resources such as seed total P mutants. Published by Elsevier Ireland Ltd.
منابع مشابه
Effects of Citric Acid on Growth Performance and Nutrient Retention of Broiler Chicken Fed Diets Having Two Levels of Non-Phytate Phosphorus and Rice Bran
Citric acid has been reported to increase utilization efficiency of dietary phytate-bound phosphorus and protein. Objective of this study was to determine the effects of citric acid on growth performance and nutrient retention of broiler chickens fed diets having two levels of non-phytate phosphorus and rice bran. Giving a completely randomize design in 2 × 2 × 2 factorial arrangement, 144 broi...
متن کاملQuantitative trait loci analysis of phytate and phosphate concentrations in seeds and leaves of Brassica rapa.
Phytate, being the major storage form of phosphorus in plants, is considered to be an anti-nutritional substance for human, because of its ability to complex essential micronutrients. In the present study, we describe the genetic analysis of phytate and phosphate concentrations in Brassica rapa using five segregating populations, involving eight parental accessions representing different cultiv...
متن کاملGenetically modified phytase crops role in sustainable plant and animal nutrition and ecological development: a review
Globally, plant-derivatives especially cereals and legumes are the major staple food sources for animals. The seeds of these crops comprise of phytic acid, the major repository form of the phosphorus, which is not digestible by simple-stomached animals. However, it is the most important factor responsible for impeding the absorption of minerals by plants that eventually results in less use of f...
متن کاملQuantitative conversion of phytate to inorganic phosphorus in soybean seeds expressing a bacterial phytase.
Phytic acid (PA) contains the major portion of the phosphorus in the soybean (Glycine max) seed and chelates divalent cations. During germination, both minerals and phosphate are released upon phytase-catalyzed degradation of PA. We generated a soybean line (CAPPA) in which an Escherichia coli periplasmic phytase, the product of the appA gene, was expressed in the cytoplasm of developing cotyle...
متن کاملDynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development.
Phytic acid (inositol hexakisphosphate [InsP(6)]) is the storage compound of phosphorus in seeds. As phytic acid binds strongly to metallic cations, it also acts as a storage compound of metals. To understand the mechanisms underlying metal accumulation and localization in relation to phytic acid storage, we applied synchrotron-based x-ray microfluorescence imaging analysis to characterize the ...
متن کامل